OVERVIEW

Soft tissue injuries involve environments under the leading causes of the gross mortality, PEF, and they form. These fundamentally multidisciplinary, heterogeneous, and complex organ systems, and pathological consequences of tissue injury and failure.

Injuries to internal soft tissue structures include the menisci, ligaments, and connective tissues, which are organically and morphologically important, but also physically more vulnerable to small cuts or at extreme, abnormal, or pathological impacts. Over the evaluation, the injuries fall into four types of injury leading to fibroblast proliferation, allowing for the formation of scar tissue (surgical, accidental, or iatrogenic), and other injuries that involve tissue spaces between the body parts, e.g., fibrous, tendon, ligament, and synovial fluid, or a combination of these.

In this context, the major question of how to measure soft tissue injury is to identify the physical, chemical, or biochemical or biological changes that occur during and after the occurrence of injury. The reason is that the treatment and management of soft tissue injuries are critical in terms of patient outcomes.

HOW IS IT MEASURED

Soft tissue injury can generally be categorized into four major types, based on the severity and cause of the injury:

1. **Sensory Injury:** Involves damage to the sensory receptors, such as nerve fibers, and results in the loss of sensation.
2. **Motor Injury:** Includes damage to the motor neurons, causing weakness or paralysis of the muscles.
3. **Structural Injury:** Refers to damage to the muscles, tendons, ligaments, and other connective tissues.
4. **Functional Injury:** Involves the overall function of the body part, such as movement and coordination.

The measurement of soft tissue injury can be performed using various techniques, including clinical examination, imaging studies, and histological analysis.

REFERENCES

